Graphs minimal with respect to contractions in some subfamilies of maximal planar graphs

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

Graphs maximal with respect to hom-properties

For a simple graph H, → H denotes the class of all graphs that admit homomorphisms to H (such classes of graphs are called homproperties). We investigate hom-properties from the point of view of the lattice of hereditary properties. In particular, we are interested in characterization of maximal graphs belonging to → H. We also provide a description of graphs maximal with respect to reducible h...

متن کامل

Maximal graphs with respect to hereditary properties

A property of graphs is a non-empty set of graphs. A property P is called hereditary if every subgraph of any graph with property P also has property P. Let P1, . . . ,Pn be properties of graphs. We say that a graph G has property P1◦ · · · ◦Pn if the vertex set of G can be partitioned into n sets V1, . . . , Vn such that the subgraph of G induced by Vi has property Pi; i = 1, . . . , n. A here...

متن کامل

Contracting planar graphs to contractions of triangulations

Article history: Received 12 December 2010 Received in revised form 24 February 2011 Accepted 7 March 2011 Available online 15 March 2011

متن کامل

signless laplacian spectral moments of graphs and ordering some graphs with respect to them

let $g = (v, e)$ be a simple graph. denote by $d(g)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $a(g)$ the adjacency matrix of $g$. the  signless laplacianmatrix of $g$ is $q(g) = d(g) + a(g)$ and the $k-$th signless laplacian spectral moment of  graph $g$ is defined as $t_k(g)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicationes Mathematicae

سال: 1987

ISSN: 1233-7234,1730-6280

DOI: 10.4064/am-19-3-4-387-398